SILVERON™ GT-101 Bright Silver
Cyanide-Free Bright Electrolytic Silver
For Electronic, Decorative and Industrial Finishing Applications

Regional Product Availability
- North America
- Europe, Middle East and Africa
- Latin America
- Asia-Pacific

Description
SILVERON™ GT-101 Bright Silver is an alkaline non-cyanide pure silver electroplating electrolyte designed to produce bright silver deposits for various applications. The product can be used in conventional plating equipment and high speed reel-to-reel, jet or wire plating equipment. The silver deposits can be applied to both copper alloy and nickel alloy substrates.

Advantages
- Bright white pure silver deposit (> 99.9% Ag)
- Free of metallic grain refiners
- Stable plating solution and constant bath performance
- Micro-hardness of the deposit: 100-120 HV (no softening effect at 150°C/1h)

Bath Make-up for One Liter

<table>
<thead>
<tr>
<th>Chemical Required</th>
<th>Low Speed (0.5 – 2 ASD)</th>
<th>High Speed (2 – 10 ASD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SILVERON™ GT-101 Make Up Solution</td>
<td>400 ml/L</td>
<td>400 ml/L</td>
</tr>
<tr>
<td>SILVERON GT-101 Silver Concentrate</td>
<td>250 ml/L</td>
<td>500 ml/L</td>
</tr>
<tr>
<td>SILVERON GT-101 Brightener</td>
<td>10 ml/L</td>
<td>---</td>
</tr>
<tr>
<td>SILVERON GT-101 HS Brightener</td>
<td>---</td>
<td>20 ml/L</td>
</tr>
<tr>
<td>SILVERON GT-101 HS Additive</td>
<td>---</td>
<td>40 ml/L</td>
</tr>
<tr>
<td>Deionized (D.I.) Water</td>
<td>Top to 1 liter</td>
<td>Top to 1 liter</td>
</tr>
</tbody>
</table>

Note:
1) For decorative applications where highly bright deposits are required, it is recommended to use the low speed electrolyte.
2) For application where high bright deposit is needed, the concentration of the Brightener can be adjusted to the upper limit as indicated in the table below.

Make-Up Procedure

1) Add SILVERON GT-101 Make Up Solution to a clean tank
2) Add SILVERON GT-101 Silver Concentrate and mix thoroughly
3) Add SILVERON GT-101 Brightener, (or SILVERON GT-101 HS Brightener for high speed applications) and mix thoroughly
4) For high speed applications, add SILVERON GT-101 HS Additive and mix thoroughly
5) Add Deionized Water to 95% of the final volume and mix thoroughly
6) Adjust the solution pH to 9.5 using KOH solution (500 g/L) or a solution of SILVERON GT-101 Acid Salt (100 g/L)
7) Add Deionized Water to the final volume and mix thoroughly
Operating Parameters

For Plating at Lower Current Densities (0.5 – 2 ASD)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Range</th>
<th>Optimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silver</td>
<td>15 – 25 g/L</td>
<td>20 g/L</td>
</tr>
<tr>
<td>SILVERON™ GT-101 Brightener</td>
<td>8 –20 ml/L</td>
<td>10 ml/L</td>
</tr>
<tr>
<td>Free Complexing Agent</td>
<td>70 – 80 g/L</td>
<td>75 g/L</td>
</tr>
<tr>
<td>pH</td>
<td>9.2 - 10</td>
<td>9.5</td>
</tr>
<tr>
<td>Temperature</td>
<td>45 – 60°C</td>
<td>50°C</td>
</tr>
<tr>
<td>Anode to Cathode Ratio</td>
<td>2:1 to 5:1; recommended 3:1</td>
<td></td>
</tr>
<tr>
<td>Agitation</td>
<td>Moderate solution agitation and cathode movement</td>
<td></td>
</tr>
<tr>
<td>Cathode Efficiency*</td>
<td>ca. 100% or 4.02 g/Ah</td>
<td></td>
</tr>
<tr>
<td>Deposition Rate*</td>
<td>0.6 µm in 1 minute at 1.0 ASD</td>
<td></td>
</tr>
</tbody>
</table>

* These properties are typical, should not be construed as specifications.

For Plating at Higher Current Densities (2 - 10 ASD)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Range</th>
<th>Optimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silver</td>
<td>35 -45 g/L</td>
<td>40 g/L</td>
</tr>
<tr>
<td>SILVERON GT-101 HS Brightener</td>
<td>16 - 40 ml/L</td>
<td>20 ml/L</td>
</tr>
<tr>
<td>SILVERON GT-101 HS Additive</td>
<td>35 – 45 ml/L</td>
<td>40 ml/L</td>
</tr>
<tr>
<td>Free Complexing Agent</td>
<td>70 – 80 g/L</td>
<td>75 g/L</td>
</tr>
<tr>
<td>pH</td>
<td>9.2 - 10</td>
<td>9.5</td>
</tr>
<tr>
<td>Temperature</td>
<td>50 – 70°C</td>
<td>50°C</td>
</tr>
<tr>
<td>Anode to Cathode Ratio</td>
<td>2:1 to 5:1; recommended 3:1</td>
<td></td>
</tr>
<tr>
<td>Agitation</td>
<td>Vigorous solution agitation with cathode movement</td>
<td></td>
</tr>
<tr>
<td>Cathode Efficiency*</td>
<td>ca. 100% or 4.02 g/Ah</td>
<td></td>
</tr>
<tr>
<td>Deposition Rate*</td>
<td>5 µm in 1 minute at 8 ASD</td>
<td></td>
</tr>
</tbody>
</table>

* These properties are typical, should not be construed as specifications.

Process Sequence

For Plating over Copper Substrates

<table>
<thead>
<tr>
<th>Step</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cleaning</td>
<td></td>
</tr>
<tr>
<td>SILVERON™ GT-101 Bright Silver</td>
<td></td>
</tr>
<tr>
<td>Cold Rinse (directly after plating to remove electrolyte from the parts)</td>
<td>The pH of this rinse solution should be set to 9 to avoid silver precipitation. This solution can be added into main bath</td>
</tr>
<tr>
<td>Hot Rinse</td>
<td>80-90°C, 10 -30 seconds or 60-70°C, 1-2 minutes</td>
</tr>
<tr>
<td>Anti-tarnish</td>
<td>Optional</td>
</tr>
<tr>
<td>Hot Rinse</td>
<td>Optional, 60°C</td>
</tr>
</tbody>
</table>
Process Sequence (Continued)

For Plating over Nickel Substrates

<table>
<thead>
<tr>
<th>Step</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cleaning</td>
<td></td>
</tr>
<tr>
<td>Nickel Plating</td>
<td></td>
</tr>
<tr>
<td>SILVERON™ GT-101 Silver Strike or Copper Strike or other activation method</td>
<td>No rinse required before silver plating Rinsing before silver plating</td>
</tr>
<tr>
<td>SILVERON GT-101 Bright Silver</td>
<td></td>
</tr>
<tr>
<td>Cold Rinse (directly after plating to remove electrolyte from the parts)</td>
<td>The pH of this rinse solution should be set to 9 to avoid silver precipitation. This solution can be added into main bath</td>
</tr>
<tr>
<td>Hot Rinse</td>
<td>80-90°C, 10-30 seconds or 60-70°C, 1-2 minutes</td>
</tr>
<tr>
<td>Anti-tarnish</td>
<td>Optional</td>
</tr>
<tr>
<td>Hot Rinse</td>
<td>Optional, 60°C</td>
</tr>
</tbody>
</table>

Analysis Procedure

Analysis of Silver Concentration

I. Principle
The silver concentration is measured using a titrimetric analysis based on precipitation of silver as its thiocyanate compound. When all the silver is precipitated the free thiocyanate causes an indicator change (Ammonium Ferric (III) Sulphate).

II. Reagents

- a) Nitric Acid concentrated (65%)
- b) ~3.5 M Nitric Acid (25% v/v of concentrated Nitric Acid)
- c) Saturated (~200 g/L) Ammonium Ferric (III) Sulphate, NH₄Fe(SO₄)₂·12H₂O treated with conc Nitric Acid until colour turns from brown to clear yellow
- d) Ammonium Thiocyanate, NH₄SCN (0.1 M)
- e) Stirrer plate

III. Procedure

- a) Pipette 5 ml of silver bath into a 250 ml Erlenmeyer flask.
- b) Dilute to 100 ml with distilled or Deionised Water, add 20 ml of 3.5 M Nitric Acid and stir.
- c) Add approx. 5 ml of Ammonium Ferric (III) Sulphate indicator and titrate using a stirrer with NH₄SCN (0.1 M) to orange/white colour endpoint.
- d) Record the number of Ammonium Thiocyanate titrated.

IV. Calculation
Silver (g/L) = 2.157 x ml NH₄SCN (0.1 M)
Analysis of Complexing Agent

I. Principle
The Complexing Agent is measured using a titration method with Silver Nitrate.

II. Equipment
a) Stirrer plate
b) 250 ml Erlenmeyer flask
c) 50 ml Burette
d) 5 ml pipette
e) pH meter

III. Reagents
a) Silver Nitrate (0.1 M)
b) Deionised Water
c) Potassium Hydroxide solution (1 M)

IV. Procedure
a) Pipette 5 ml of silver bath into a 250 ml Erlenmeyer flask.
b) Dilute to 100 ml with distilled or Deionised Water.
c) Set the pH with the Potassium Hydroxide solution (1 M) to 10.0. This is very important. If the pH is too low, the consumption of Silver Nitrate is too low, if the pH is too high, the consumption is too high
d) Titrate with Silver Nitrate (0.1 M) to the first permanent turbidity.

V. Calculation
Complexing Agent (g/L) = 5.126 x ml Silver Nitrate (0.1 M)

Analysis of HS Additive

I. Principle
The SILVERON™ GT-101 HS Additive is measured by UV and calculated with a calibration curve. The absorbance is measured at 255nm. In the bath make up the peak is partially covered. Nevertheless the absorbance at 255 nm is proportional to the concentration.

II. Procedure
a) Pipette 1 ml of sample to a 100 ml volumetric flask, fill with water to the mark and mix thoroughly.
b) Pipette 10 ml from the flask to another 100 ml volumetric flask, fill with water to the mark and mix thoroughly.
c) Measure absorbance at 255 nm.

III. Calibration curve
Prepare make ups with different SILVERON GT-101 HS Additive concentrations:

400 ml/L SILVERON GT-101 Make Up solution
500 ml/L SILVERON GT-101 Silver Concentrate
10 ml/L SILVERON GT-101 Brightener
Analysis Procedure (Continued)

- without SILVERON™ GT-101 HS Additive
- 20 ml/L SILVERON GT-101 HS Additive
- 40 ml/L SILVERON GT-101 HS Additive
- 60 ml/L SILVERON GT-101 HS Additive

Measure absorbance like the above procedure.

Example calibration curve:

![UV Analysis of HS Additive](image)

Bath Maintenance

Silver Concentration

The optimum silver concentration should be maintained based on analysis. To raise the silver concentration by 1.0 gram, add 12.5 ml SILVERON™ GT-101 Silver Concentrate.

pH

The solution pH should be maintained at the optimum using KOH solution (500 g/L) or a solution of SILVERON GT-101 Acid Salt (100 g/L).

Free Complexing Agent

Replenish complexing agent based on analysis. To raise complexing agent by 1.0 g/L add 5.3 ml/L SILVERON GT-101 Make Up Solution. The complexing agent is consumed primarily through solution drag-out. Typical consumption is 2.0 - 10.0 litres per 1000 Ah.

SILVERON GT-101 Brightener and SILVERON GT-101 HS Brightener

Replenish SILVERON GT-101 Brightener, or SILVERON GT-101 HS Brightener, based on hull cell tests. Consumption of SILVERON GT-101 Brightener is 1,500 – 2,500 ml per 1,000 Ah. For high speed applications, consumption of SILVERON GT-101 HS Brightener is 3500 - 4500 ml per 1000 Ahr.

SILVERON GT-101 HS Additive

The consumption of SILVERON GT-101 HS Additive is mainly due to solution drag-out. Replenish SILVERON GT-101 HS Additive based on analysis (UV). Typical consumption 200 - 1000 ml per 1000 Ah dependent on operation.
General Notes

Bath Temperature
It is recommended to operate SILVERON™ GT-101 Bright Silver at the elevated temperature (50°C) for both low speed and high speed plating, in order to achieve the optimum brightness of deposits. For high speed applications, increasing the bath temperature is more effective than varying any other parameters in extending the applicable current density range.

Tolerance Limit of some ions
- Copper < 100 mg/L
- Nickel < 500 mg/L

After long idle time of about two weeks, Hull cell should be done to check the bath. In most cases extra brightener will be needed to achieve full deposition range.

Rinsing After Silver Plating
1. Hot rinsing directly after SILVERON GT-101 Bright Silver is critical to maintain the fine grain structure of the silver deposit during the storage at high temperatures (> 150°C) and to prevent yellowish silver deposit.
2. Generally most silver anti-tarnish chemistry works better when using hot rinsing after silver plating as well as after anti-tarnish process.

Anode to Cathode Ratio
High anode to cathode ratio (prefer 3:1 to 5:1) is critical to reduce particles formed on the anodes and to prevent silver anode passivation.

Equipment

Tanks: Temperature-stabilised translucent white polypropylene; or rigid tanks coated with an equivalent material capable of withstanding temperatures up to 60°C.

Anodes: Silver anode (99.99%). The use of polypropylene anode bags is highly recommended.

Heaters: PVDF-clad panel heaters or titanium with thermostatic control. PTFE

Filtration: Preferably continuous using 5 microns woven polypropylene cartridges with a flow rate at least three times tank volume/hour.

Equipment Preparation
All items of equipment that come into contact with the SILVERON™ GT-101 Bright Silver electrolyte must be cleaned thoroughly prior to use. The recommended procedure must be applied to new as well as with previously used for other plating processes, for example, cyanide-based systems.

Cleaning Solution
Solution of Potassium Hydroxide 100 g/L

Leaching Solution
Solution of SILVERON GT-101 Acid Salt 30 g/L or SOLDERON™ Acid HC 10% (v/v)
Equipment Preparation
(Continued)

Procedure

1) The tank and related equipment should be scrubbed to remove any visible debris and then flushed with Deionised Water to remove any visible residues.
2) Discard rinse water.
3) Fill the tank with 100 g/L Potassium Hydroxide solution and heat to approximately 55°C, and then circulate this solution through the system for at least 12 hours.
4) Discard the Potassium Hydroxide solution.
5) Flush the equipment with Deionised Water for 1 hour.
6) Discard the Deionised Water.
7) Fill the equipment with a solution of 30 g/l SILVERON™ GT-101 Acid Salt or with a solution of SOLDERON™ Acid HC and circulate for approximately 12 hours at 40°C.
8) Discard the acid solution.
9) Flush the equipment with Deionised Water for 1 hour. The final pH should be around 6-8.
10) Discard the Deionised Water. The equipment is now ready for use.

Note. The plating tank must be totally free of any residues of metals deriving from other processes as well as from trace of cyanide, prior to make up.

Associated Products

SILVERON™ GT-101 Make Up Solution
SILVERON GT-101 Silver Concentrate
SILVERON GT-101 Brightener
SILVERON GT-101 HS Brightener
SILVERON GT-101 HS Additive
SILVERON GT-101 Acid Salt
Handling Precautions

Before using this product, associated generic chemicals or the analytical reagents required for its control, consult the supplier's Material Safety Data Sheet (MSDS)/Safety Data Sheet (SDS) for details on material hazards, recommended handling precautions and product storage.

CAUTION! Keep combustible and/or flammable products and their vapors away from heat, sparks, flames and other sources of ignition including static discharge. Processing or operating at temperatures near or above product flashpoint may pose a fire hazard. Use appropriate grounding and bonding techniques to manage static discharge hazards.

CAUTION! Failure to maintain proper volume level when using immersion heaters can expose tank and solution to excessive heat resulting in a possible combustion hazard, particularly when plastic tanks are used.

Storage

Store products in tightly closed original containers at temperatures recommended on the product label.

Disposal Considerations

Dispose in accordance with all local, state (provincial) and federal regulations. Empty containers may contain hazardous residues. This material and its container must be disposed in a safe and legal manner.

It is the user's responsibility to verify that treatment and disposal procedures comply with local, state (provincial) and federal regulations. Contact your Dow Electronic Materials Technical Representative for more information.

Product Stewardship

Dow has a fundamental concern for all who make, distribute, and use its products, and for the environment in which we live. This concern is the basis for our product stewardship philosophy by which we assess the safety, health, and environmental information on our products and then take appropriate steps to protect employee and public health and our environment. The success of our product stewardship program rests with each and every individual involved with Dow products - from the initial concept and research, to manufacture, use, sale, disposal, and recycle of each product.

Customer Notice

Dow strongly encourages its customers to review both their manufacturing processes and their applications of Dow products from the standpoint of human health and environmental quality to ensure that Dow products are not used in ways for which they are not intended or tested. Dow personnel are available to answer your questions and to provide reasonable technical support. Dow product literature, including safety data sheets, should be consulted prior to use of Dow products. Current safety data sheets are available from Dow.

For Industrial Use Only. This information is based on our experience and is, to the best of our knowledge, true and accurate. However, since conditions for use and handling of products are beyond our control, we make no guarantee or warranty, expressed or implied, regarding the information, the use, handling, storage or possession of the products, or the applications of any process described herein or the results sought to be obtained. Nothing herein shall be construed as a recommendation to use any product in violation of any patent rights.

Contact:
North America: 1-800-832-6200
Taiwan: 886-37-539100
China: (+86) 21-3851-1000
Hong Kong: (+852) 2879-7333
Korea: (+82) 2-5490-0700
Japan: (+81) 3-5460-2200
Europe: (+41)(0)44-728-2111
www.dowelectronicmaterials.com

NOTICE: No freedom from infringement of any patent owned by Dow or others is to be inferred. Because use conditions and applicable laws may differ from one location to another and may change with time, Customer is responsible for determining whether products and the information in this document are appropriate for Customer's use and for ensuring that Customer's workplace and disposal practices are in compliance with applicable laws and other government enactments. The product shown in this literature may not be available for sale and/or available in all geographies where Dow is represented. The claims made may not have been approved for use in all countries. Dow assumes no obligation or liability for the information in this document. References to "Dow" or the "Company" mean the Dow legal entity selling the products to Customer unless otherwise expressly noted. NO WARRANTIES ARE GIVEN; ALL IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE ARE EXPRESSLY EXCLUDED.